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Abstract—In this paper two models describing transport phenomena in rotary heat exchangers are con-

sidered : one disregarding and the other including heat conduction in the matrix. Both models are described

by the system of energy conservation equations which is solved by analytical methods. On the basis of

these solutions the effect of the matrix longitudinal heat conduction on the temperature fields of gases and
matrix is studied.

1. INTRODUCTION

APPLICATIONS of the rotary heat exchangers as ther-
mal regenerators for steam boilers, gas turbine instal-
lations or ventilation and air conditioning systems
are generally known. This is due to large and non-
expensive heat transfer area per unit volume in the
rotary regenerators (~400 m> m~? for steam boiler
regenerators and as many as ~2000 m? m~? for gas
turbine installations). Thus the counterflow rotary
heat exchangers combine compactness with high per-
formance.

Heat transport phenomena in the rotary exchangers
have been modelled by systems of partial differential
equations formulated with various simplifying
assumptions. These models for steady-state operation
can be classified into two categories:

(a) taking into consideration both convection and
exchange terms [1-9] and thus conservation energy
equations in non-dimensional form can be written as

09, 08,
5(;=aj(—9j+9,), —Zl=bj(.9,-~0j), j=1,2;

)
M
(b) considering not only the terms mentioned
above but also the term of matrix longitudinal heat
conduction [10-14] so that the governing equations
in dimensionless form are as follows:
8%8;

J
oz?

09;

5—(pj =aq;(—9,+0)+¢
@

2, .

F b(%;-0), j=1,2.

For both categories of the models the balance equa-

tions are solved either analytically [1, 4, 6-9, 14] or
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numerically {2, 3, 5, 10-13]. These solutions are usu-
ally presented in the form of a relationship #~NTU,
when heat conduction is neglected [5] or n—-NTU, at
A* = const. taking heat conduction into consideration
[11, 15]. In some papers [8, 9, 12-14] the solutions of
the energy equations lead to the determination of
temperature fields of the gases and matrix. The matrix
thermal-conduction effect was evaluated by Mondt
[10]. He found that the matrix thermal conduction
causes a reduction of the temperature drops in the
rotary heat exchanger.

The purpose of this paper is to determine the effect
of the matrix longitudinal heat conduction on the
temperature fields of the gases and matrix. The effect
of the heat conduction is analysed by comparing the
calculated temperature fields obtained from the solu-
tions of equation systems (1) and (2). The solution of
the system of equations (1) can be easily expressed by
Bs and Bes functions which have been applied in
the theory of heat exchangers by Lach [16]. The solu-
tion for the system of equations (2) was taken from
ref. [14].

2. THE SOLUTION AT 4i,=0

The coordinate system for these considerations is
shown in Fig. 1. The energy conservation equations
can be written in the form

at.
(1 —s)pmcmwa—q; = o, Y(T,—1;)

€P;CpV; 66_? =Y (,—T)), @
j=12
with boundary conditions
T:(¢,{=0)=T(9) 4
Ty, L =0) =T%(¢) &)
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NOMENCLATURE
a,b,c coefficients A thermal conductivity of matrix
A,, D, coefficients of the series for heating and u* v?  roots of the transcendental equations
cooling zones, respectively for heating and cooling zones,
€, gas specific heat at constant pressure respectively
Cn metal matrix specific heat P, P density of gas and metal matrix,
C, coefficients of the numerical quadrature respectively
for integral equations ¥ zone angle
d distance between temperature fields @ rotational speed.
h matrix height
ry,s;  real roots of the characteristic Subscripts
equations for heating and cooling i heating zone
zones, respectively 2 cooling zone
r»,5,  real parts of complex conjugate roots k serial number
of the characteristic equations for m matrix.
heating and cooling zones, respectively
ry, §3  imaginary parts of complex conjugate )
roots of the characteristic equations Superscript
for heating and cooling zones, ' at the inlet.
respectively
t matrix temperature Dimensionless quantities
T gas temperature NTU  number of transfer units for gas,
2 velocity of gas in matrix aYhi(epc,v)
Y matrix heat transfer area per unit NTU,, number of transfer units for metal
volume. matrix, a Y /(1 —£)pmcaw]
NTU, overall number of transfer units
Greek symbols Pe Peclet number of metal matrix,
o heat transfer coefficient [Al/ (prCmb®] !
B,y coefficients z longitudinal coordinate, {/h
& porosity 3 matrix temperature, (¢ —TH/(7T,—~T%)
') coordinates, along the matrix in the g gas temperature, (T— T)/{(T,—T%)
direction of gas flow and rotation of A* conduction parameter (Bahnke and
the matrix, respectively Howard [11])
# exchanger heat transfer effectiveness @ coordinate in direction of rotation, ¢/y.
1 gas t(p=0,0)=0(d=¥1,h—~0) (&)
ML Wd =YD = =0h=0. (D)
heating zone ' cooling zone T.he sy§tem of equatiops 3 may be rewrittgn in
N (1) 2) d'lmensmnles_s'form b)./ mtrqducmg new non-dimen-
sional quantities mentioned in the nomenclature
-.m—g—'[_i.L-—d
How O NTU,(~9,+0,)
< % | ®)
o _ NTU.(3,—0), j=1.2
’3: - f * i Fir - * -
| é, v S IR VR o o
1 2 1 The dimensionless boundary conditions are
I 8(p.z=0) = fi(¢). j=12 %)
gas Bip=0)=%(p=11-2 (10
1 flow
Ji(p = 1,2) = 3(p = 0,1 ~x). (1D

Fig. 1. Coordinate system and schematic representation
of the problem under consideration for the rotary heat
exchanger.

The sokution of the system of equations (8) expressed
by Bs and Bes functions for a crossflow recuperator
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was presented by Lach [16]. His solution is used here
for each gas—matrix zone. Assuming that

T, =const. and T% = const. (12)

one has boundary condition (9) in the form
0,(p,z=0)=1 (13)
0,(p,z=0)=0. 14)

Substituting relations (13) and (14) into the solutions
[16] and having made the necessary integrations one
obtains:

for the temperature of the matrix in the heating
zone

9:1(9,2) = 8,(0,2) e™""0m¢

+ _r 9,(0, p) e~ NTUme—NTU =0

0
x Bes (NTULNTU @, z—p) dp

e NTUne=NTUzBe (NTU, 0, NTU,z); (15)

for the temperature of the gas in the heating zone
0,(p,2) = e NTUm¢ N7 Bs(NTUpy 9, NTU, 2)

z

+NTU| j 9[(07 5) e_NTUm|¢—NTU|(Z"5)
0

x Besy [NTU,, NTU,(z—9),0]dd; (16)
for the temperature of the matrix in the cooling
zone
82(9,2) = 9,(0,z) e~ ""Vm?

+ f 8,0, ) = VUm0~ NTUe=8)
0

x Bes (NTU o NTU p,z—p) dy; {17
for the temperature of the gas in the cooling zone

z

0:(9,2) = NTU, f 8,(0, 6) e~ TUme ~NTUs(e~
0

x Beso [NTUny, NTU,(z—5), ] dé. (18)

The unknown functions 3,(0, z) and 3,(0, 2) in for-
mulas (15)—(18) must be obtained on the basis of
boundary conditions (10) and (11). Setting relation-
ships (15) and (17) into equations (10) and (11) the

following system of integral equations is obtained :
3

9[(0’ Z) e—NTU“|I + J 91(0’ ”)e—NTUml-—NTUI(z—;A)
0

x Bes, (NTU,,; NTU ,,z—p)du—39,(0,1—2)
= e NTm =Nz Bg (NTUpy, NTU, 2)

19
‘91(0’ Z)—32(0, 1 —Z) e_NTUmz

1—z
_f 92(0’ #)C»NTUmZ—NTU2(1~z—y)
0

x Bes (NTU ,NTU, 1 —z—p)du = 0. ]
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To find the solution of the above problem (19) the
method of successive approximations may be applied.
However, this procedure is too complicated to be
carried out analytically. System (19) can be easily
solved in a numerical way [2] by using the colloca-
tion method which reduces the problem into a sys-
tem of linear equations. The latter was used here
(Appendix A).

3. THE SOLUTION AT A, >0

In this case the energy conservation equations
(coordinate system in Fig. 1) are as follows:

ot
(1 _8)pmcmw%

2

0%t
=, Y(T—t;)+(1—&)A

mgc—% (20)
oT;
sp,cpjngci =oY({-T), j=12
subject to boundary conditions
Ti(¢,{=0)=Tj, j=12 @n
1(¢=0,0) = 12(¢ = ¥5,h—0) (22
1 =y,0)=10(¢=0,h-0) (23
o[, ((=0andh)]oL =0, j=12. (24

By introducing dimensionless quantities defined in the
nomenclature one can reduce the system of equations
(20) to

09, 39,
B—(PJ = NTUn/(=8;+6))+Pej ' =
2%
29, )
= NTU,(3;,-0), j=1,2
The corresponding dimensionless boundary con-
ditions are
0,(p,z=0)=1 (26)
02(0,z=0)=0 27
Si1(p=0,2) = %(p=1,1-2) (28)
i(p=1,2) = 9(p=0,1-2) (29)
09;[p,(z=0and 1)]/oz =0, j=1,2. (30)

The solution of the above problem is given in ref. [14]
(Appendix B) in the form of a series:

for the gas temperature in the heating zone

0,(p,2) =1— Y A e riotrae
k=0

X [e71+7720% —c08 (r342) + B sin (r3x2)] ;. (31)
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for the matrix temperature in the heating zone

8,(p,2) =1— Z Akefmfww“z

k=0
=2 Tk Bursu—rax 1
x [e <1+NTU1 T\ TN,
ﬁkr2k+r3k) . jl
X o8 (r3zz)+ + —————=Isin(ry;z) |. (32
(r242) (ﬂk VU i) |32

Similar formulas for temperature fields in the cooling
zone are presented in Appendix B.

4. THE EFFECT OF MATRIX HEAT CONDUCTION

This effect was determined by comparison of tem-
perature fields calculated on the basis of the solutions
presented in Sections 2 and 3. In Figs. 2-7 are pre-
sented the temperature fields in the rotary heat ex-
changer at various Peclet numbers, NTU,, and NTU
values. The effect of longitudinal heat conduction was
evaluated by calculating the distance between tem-
perature fields. This distance d was described by for-
mulas:

for the temperature fields of gases in the j-zone

d =

7

\/<Jo J; [Hj((P’ z) lPef':()_Bj(Qos z) |Pej“‘>0]2 dZd‘P);

(33)
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for the temperature fields of the matrix
dy =

2 [ Y
\/( 2 Lﬁ [9/(¢s3)|1>e,"’f0_Sj(Q’Z)‘Pejbolded‘/’)-
j=1 [ ;

(34)

The computations of distances d or d,,, were performed
on the basis of the solutions presented in Sections 1
and 2. Numerical results are presented in Figs. 8-11
at NTU,, = 0.2 and 1.0, respectively.

The analysis of temperature fields presented in Figs.
2-7 shows that the trends of temperature changes in
the function of the coordinates are similar both when
heat conduction is neglected (Pe~' = 0) or taken into
account (Pe~' > 0). The effect of longitudinal heat
conduction makes the temperature of the gas at the
outlet of the heating zone higher and the cooling zone
lower as compared with the temperature of gases when
heat conduction is not taken into account. It is a
characteristic for calculated temperature fields of
gases with regard to heat conduction that :

(a) the temperature decreases in the direction of gas
flow through the heating zone more rapidly than when
heat conduction is not taken into account, next the
trend diminishes, the graphs of the temperature fields
at Pe”' > 0 and Pe~' = 0 intersect and at the outlet
the gas temperature is higher at Pe ' > 0 than at
Pe '=0;

(b) the temperature increases in the direction of the
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Fi1G. 2. Effect of matrix longitudinal heat conduction on temperature distributions of gases in rotary heat
exchanger at constants: NTU, = NTU, = 6 and NTU,,, = NTU,, = 0.2.
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FiG. 3. Effect of matrix longitudinal heat conduction on temperature distributions of matrix in rotary heat

exchanger at constants: NTU, = NTU, = 6 and NTU,, = NTU,,, = 0.2
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F16. 4. Effect of matrix longitudinal heat conduction on temperature distributions of gases in rotary heat
exchanger at constants: NTU, = NTU, = 6 and NTU, = NTU,, = 1.
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FiG. 5. Effect of matrix longitudinal heat conduction on temperature distributions of matrix in rotary heat
exchanger at constants: NTU | = NTU, = 6 and NTU,,; = NTU,, = 1.
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Fi6. 6. Effect of matrix longitudinal heat conduction on temperature distributions of gases in rotary heat
exchanger at constants: NTU, = 6 and NTU, =8, NTU,,,, = 0.4, NTU,,, = 0.5.
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FiG. 7. Effect of matrix longitudinal heat conduction on temperature distributions of the matrix in rotary

heat exchanger at constants: NTU, = 6, NTU, = 8, NTU,,, = 04, NTU,,, =0.5.

FiG. 8. Effect of NTU, and Pe, on the distance d; (formula (33)) between temperature fields of gases in
the heating zone at constants: NTU, = NTU,, Pe, = Pe,, NTU,; = NTU,, = 0.2 (in the cooling zone the

effect is identical).

T
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NTU,, Pe, = Pe, and NTU,,, = NTU,;, = 1 (in the cooling zone

the effect is identical).

FiG. 9. Effect of NTU, and Pe, on the distance d, (formula (33)) between temperature fields of gases in

the heating zone at constants: NTU,

EL_:__::
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14l

NTU and Pe, = Pe, = Pe on the distance d,, (formula (34)) between

temperature fields of matrix in rotary heat exchanger at constants: NTU,,, = NTU,,, = 0.2.

= NTU, =

Fi1G. 10. Effect of NTU,
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FiG. 11. Effect of NTU, = NTU, = NTU and Pe, = Pe, = Pe on the distance d, (formula (34)) between
temperature fields of matrix in rotary heat exchanger at constants: NTU,,; = NTU,, = 1.

gas flow through the cooling zone more rapidly when
Pr-'>0 than when Pe '=0, next the trend
decreases, the charts of temperature fields at Pe~' > 0
and Pe~! = 0 intersect and at the outlet of the cooling
zone the gas temperature is lower at Pe~! > 0 than
Pe ' =0.

The temperature of the matrix changes in the direc-
tion of the gas flow as follows:

(a) at the inlet of the heating zone it is lower while
it is higher at the inlet of the cooling zone at Pe~—* > 0
in comparison to Pe~ ' =0;

(b) at Pe~' >0 the temperature of the matrix
changes by a lesser degree than at Pe~' = 0, the charts
of the temperature fields at Pe~! >0 and Pe ' =0
intersect ;

(c) hence at the outlet of the zones the temperature
of the matrix is higher in the heating zone and lower
in the other zone at Pe~!> 0 in comparison to
Pe ' =0.

Finally, the numerical experiments presented here
show that the effect of heat conduction in the matrix
is greater on the matrix temperature field than on the
gas temperature.

In Figs. 8-11 the influence of the heat conduction
is shown on distances 4 and d,, obtained from for-
mulas (33) and (34). As shown the distance 4 between
temperature fields calculated at Pe™'>0 and
Pe~ ' = 0 changes as follows:

(a) with an increase of Pe~! values the distance d
also increases at NTU,, = const. and NTU = const. ;

(b) as NTU increases the distance d also increases
at NTU,, = const. and Pe~! = const.;

(c) as NTU,, increases the distance d decreases at
NTU = const. and Pe~ ! = const.

Hence one may conclude that the effect of longitudinal
heat conduction in the matrix is essential at small
NTU.,, values. Moreover, the effect becomes greater
with an increase of Pe~! and NTU values.

5. CONCLUDING REMARKS

On the basis of the analytical solutions of model
equations the effect of the longitudinal heat con-
duction in the matrix on temperature fields of gases
and matrix of the rotary heat exchangers was studied
at the ranges of the dimensionless parameters in each



2236

gas matrix zone as follows:
02K NTU, <1
1< NTU<10
0.005 < Pe~' <0.1.

The numerical experiments reported in this paper have
shown that heat conduction may essentially affect the
temperature fields in rotary heat exchangers. The
influence is greater for the matrix than for the gases
and particularly evident at small NTU,, values.
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APPENDIX A

(1) Necessary integrals for rewriting the solutions [16] in
the form of equations (15)—(18) are

0

?
NTU,; j e~ N Un/ 0= ~NTU;? Bogo INTU,; NTU,;(@—0),2] dé

= e MUn#NTU2 Bg (NTUp 0, NTU,2)  (Al)

T. SKIEPKO

°3
J e NTUnfte—0)=NTUsz Bos, (NTU; NTU, z, ¢~ p) dp
o

= e VTV [e " Vn® Bso(NTU,;0, NTU,2)—1].  (A2)
(2) The numerical form of the system of integral equations

(19). The algebraic elements of equations (15)-(18) are
denoted as follows:

K, (z,4) = e VTVmNTUEN Bog (NTUpy NTU,, 2 1)

(A3)
P(z) = —e MUn=NTUsZ B (NTU,,,, NTU,2) (A4)

Ky(z, 1) = & MU N0 =2-0 Bog (NTU. ,NTU,,
l—z—pu). (AS)

The trapezoid rule coefficients for the numerical presentation
of the system of integral equations (19) are

C, = Az, k=2,...,i—-1
C,=C;=Az2, i=1,..., H.
By collocating the system of integral equations (19) at each

i=1,...,n collocation point one obtains an equivalent sys-
tem of linear equations in the form

e MU 9,(0,2,)—9,(0,2,) = )

(A0)

i1
P(z)) Z Ci9,(0,2)K,(z;, z) + e~V + C K (2, 2.)]
Py

x 3 (0,2) = 82(0,2,.; ) = P(z)), i= 2,--},HL
9,(0,z) — z Ci82(0, 2K, (21, 20) (AT)
=1
—[e™"Vm 4+ CiK3(Zis 2o v 1)}92(0, 2,14 1) = 0,
i=1,...,n—1

8,(0,z,) —e Vm 8,(0,2,) = 0.

After solving the above system of equations (A7) one obtains
9,0, z) and 9,(0, z)) values at each point (i = 1,...,n) of
the collocation.

APPENDIX B. THE SOLUTION OF THE ENERGY
CONSERVATION EQUATION AT 4, >0

(1) The heating zone

By introducing new functions for the zone

03p,2) =1-0,(0.2) (BD)
$(p.2) = 1-9,(9,2) (B2)
system (25) can be written in the form
9% o19%
a’l = NTUp (— 9%+ 0%+ Pey! 5 L
P z (B3)
0%
67‘ = NTU, (5*—6%).

Now, boundary conditions (26)-(30) may be given as fol-
lows:

M, z=0)=0 (B4)
%,z =0) =0 (BS)
1-9Mp=0,2) = (e =1,1-2) (B6)
I—-Me=1,2)=3p=0,1-2) (B7)
0%%[p,(z =0and 1)}/0z =0 (B8)
09%e, (z = 0 and 1)]/6z = 0. (B9)
From equations (B3) one can determine 9§
=ots b @10
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and relationship (B10) is substituted into equation (B3). As
a result one has

a6t + 1 8%t

0p NTU, 0zd¢

_(a0* 1 36Y\ NTU,, o6*
—Per |y OO1) N m T
8z ' NTU, é7° NTU, oz

This equation will be solved by the method of separating

variables. To do this the solution of equation (B11) is con-
structed in the form of the product

0}, 2) = F(@)Z(2). (B12)
Substituting equation (B12) into equation (B11) one obtains,
after separating variables, the following ordinary differential
equations :

(B11)

aF
3 HHF=0 (B13)
P €202
NTU, 422 " 1% 42
NTU., @ \dZz .,
- (NTU, NI, ) & THE=0 BlY
The general solution of equation (B13) has the form
F(p) = const.exp (—u’¢) (B15)
while
Per' , ., (NTU, \
wto,* TP X —\J7o, ~ vro, )T =0

(B16)

is a characteristic equation for a linear homogeneous differ-
ential equation (B14). The u*-values are chosen in such a
way that equation (B16] has one real root, r, and two
complex conjugate roots, ry = r,+ir; and ry =r,—ir,, In
this way boundary conditions (B4) and (B8) can be satisfied
simultaneously. The real solution of equation (B14) has the
form

Z(z) = Ae'v +¢e'? [Bcos (ryz)+ Csin(ryz)).  (B17)

Taking into account expressions (B10) and (B12) one can
rewrite boundary conditions (B4) and (B8) in the form

Zl,0=0 (B18)
d 1 dZ
a[z+ NI, EZ—LO =0 (B19)
d 1 dZ
E[z+ NTT. ELI =o0. (B20)

Taking into consideration solution (B17), on the basis of
conditions (B18)—(B20), one obtains a homogeneous system
of three linear equations

1 0
a b c
ae" er[bcos(ry)—csin(ry)] e2[bsin(r;)+ccos(r;)]
A 0
x|Bl=[0{ B21)
C 0

2237
where

a=r(1+-—2 B22

e NTU, (B22)

2
_ r;—rs

b=r,+ NTT, (B23)

420 B24

cC=Tr; NTU, (B24)

The linear homogeneous system (B21) has non-zero solu-
tions if its determinant is equal to zero. Hence one obtains
the following transcendental equation :

ace" 14 (b2 —ab+c?)sin (r;3) —accos (r;) =0 (B25)
on the eigenvalues u?. Equation (B25) has successively

increasing non-negative roots (k =0, 1,..., ©). Now equa-
tion (B21) can be rewritten in the form

1 o[B] [ -4
[b,, Ck] [Ck] B [‘Ak“k] 329
Hence one obtains
Bo=—4,, Ci=Apf, Bi=b—adlc, k=0,1,...
B27)

Substituting equations (B27) into equation (B17) one
obtains the eigenfunctions Z, as follows:
Z,(2) = Ap e [eC10 207 ~Cos (r3, 2)

+Besin(rx2)], k=0,1,2,... (B28)

After substituting equation (B28) into equation (B12) and
also taking into account equations (Bl), (B2), (B10) and
(B15) one finally obtains the solutions in the form of equa-
tions (31) and (32).

(2) The cooling zone

By making use of a similar procedure as above one obtains
solutions of the energy conservation equations for this zone
in the forms:

(a) gas temperature
w0
0,(0,2) = Z D, S GanTd
k=0
x [eC1420% 08 (53,,2) + Vi 8in(s342)];  (B29)
(b) matrix temperature

Q0
82(0,2) = ¥, Dye i+ el rad
k=0

Sk ViS3k —S2x
X (l + NTUZ) + ( NTT, l)cos ($342)

TeSaktSax ) o
+ (yk+ NTT, )sm (5:22)). (B30)

Coefficients 4, and D, are determined on the basis of
boundary conditions (B6) and (B7) by the collocation
method.
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T. SKiEPKO

EFFET DE LA CONDUCTION THERMIQUE LONGITUDINALE, DANS LA MATRICE,
SUR LE CHAMP DE TEMPERATURE DANS UN ECHANGEUR TOURNANT

Résumé—On considére deux modeéles pour décrire les phénomeénes de transfert dans des échangeurs de

chaleur rotatifs : I'un néglige et I'autre prend en compte la conduction de chaleur dans la matrice. Les deux

modéles utilisent les équations de conservation d’énergie qui sont résolues par des méthodes analytiques.

A partir de ces solutions est étudié I'effet de la conduction longitudinale de matrice sur les champs de
température dans le gaz et la matrice.

DIE AUSWIRKUNG DER LANGSWARMELEITUNG AUF DAS TEMPERATURFELD
IN EINEM ROTIERENDEN WARMETAUSCHER

Zusammenfassung—In dieser Arbeit werden zwei Modellvarianten untersucht, die Transportvorginge in

rotierenden Wirmetauschern beschreiben : Ein Modell beriicksichtigt die Wirmeleitung, das andere nicht.

Beide Modelle werden durch das System der Energieerhaltungsgleichungen beschrieben, die durch analy-

tische Methoden gel6st werden. Auf der Basis dieser Lésungen wird die Auswirkung der Lingswirmeleitung
in der Matrix auf die Temperaturfelder in der Matrix und in den Gasen untersucht.

BJIMSIHUE [PONOJIBHON TETUIONPOBOAHOCTH MATPHLILI HA TEMITIEPATYPHBIE
NOJisi B POTOPHBIX TEINIOOBMEHHHKAX

ARBOTRIME—PacCMOTPEHb! ABE MOJE/H, ONMCHIRAIOMIAEG ABJICHHA NEPEHOCE B POTOPHBIX TEMIOOOMEHHM-

X3aX: B OOHOM H3 HMX UTHOPHDYETCR, 2 BO BTODOH YYMTHIBAETCHS TEIIOMPOBOAHOCTH MaTpHub. Obe

MOJEAH CONEpXKAT CHCTEMY YDaBHEHHH COXPAHECHHS JHECPIMM, KOTODHIC DEHIAIOTCA AHAIMTHYCCKHMH

metonaMit. Ha ocHose THX peienu#lt HCCaenyercs BARAHNE NPOACJbHON TEINONPOBOAHOCTH MaTPHILB!
Ha pacTpefccHHe TeMnepaTypsi B Helf B razax.



